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Abstract. Transmission probabilities of the scattering problem with a position dependent mass are studied.
After sketching the basis of the theory, within the context of the Schrödinger equation for spatially varying
effective mass, the simplest problem, namely, transmission through a square well potential with a position
dependent mass barrier is studied and its novel properties are obtained. The solutions presented here may
be advantageous in the design of semiconductor devices.

PACS. 03.65.Ca Formalism – 85.30.Hi Surface barrier, boundary, and point contact devices

1 Introduction

One dimensional quantum wells (QW) and their analysis
have played an increasingly significant role in various ap-
plications as well as the understanding of the properties of
a variety of semiconductor devices [1–4]. The motivation
for studying these problems is the recent developments in
the nanofabrication of semiconductor devices, where one
observes QW with very thin layers [5]. The effective mass
of an electron (hole) in the thin layered QW varies with
the composition rate. In such systems, the mass of the elec-
tron may change with the composition rate which depends
on the position. Therefore, the corresponding Schrödinger
equation should be formulated in a correct form.

Exact and quasi-exact solvability of the position de-
pendent mass (PDM) Schrödinger equation has been the
subject of recent interest [6–14]. It provides a useful model
for the description of many physical systems [15–19]. Al-
though it has been solved for a number of potentials and
masses, the general solution has not yet been completed
for square well potentials. Here we suggest a model that
has been easily related to the QW structures with various
PDM models. We will demonstrate a number of promising
applications of the model.

Potential device applications, as well as purely scien-
tific interest, provide the motivation for studies of the
nature of the transport properties of the PDM electron
through the barriers or wells. For realistic transport prop-
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erties in semiconductors, the usual Schrödinger equation
has to be replaced by the more general equation [24]:

(
1
4

(
mαpmβpmγ +mγpmβpmα

)
+ V (z) − E

)
ψ(z) = 0

(1)
with the constraint over the parameters: α+β+γ = −1. In
applications, the spatial variation of m is either neglected,
or, alternatively various special cases of (1) have been sug-
gested in the literature [25–27]. In this article we focus on
abrupt heterostructures. It has been proven [18] that for
sharp heterostructures α = γ; otherwise the wavefunction
is forced to vanish at the heterojunction boundary which
is clearly an unphysical result.

In contrast to the solution of the PDM Schrödinger
equation including Coulomb, Morse, harmonic oscilla-
tor, etc. type potentials [20–23], the study of the PDM
Schrödinger equation including a constant potential has
not attracted much attention in the literature. Such quan-
tum systems have been found to be useful in the study of
electronic properties of semiconductors. Generally, analy-
sis of the scattering problem with PDM is based on the
investigation of the simple problems, and it was pointed
out that the transmission probability no longer tends to
unity when incoming energy goes to infinity. The funda-
mental question remains open: whether the behavior of
the transmission probability is generic or if it depends on
the properties of the mass. To answer this question one
has to obtain a general expression for the transmission
probability by solving (1), for an arbitrary mass.
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The rest of the paper is organized as follows. In Sec-
tion 2, we outline a specific formulation of the exactly solv-
able PDM Schrödinger equation to derive a general expres-
sion for the transmission amplitude of the wave through
the square barrier. In Section 3, we apply our model to
calculate the transmission coefficient of the wave through
the barrier for various spatially varying effective masses.
Finally, a summary of the work and conclusions are drawn
in Section 4.

2 Theory

A typical QW structure is composed of a semiconductor
thin film embedded between two semi-infinite semiconduc-
tor materials. For a compositional QW, the well material
can be generated by alternate deposition of thin layers.
For example, in a GaAs/AlxGa1−xAs QW there exists a
wide GaAs well, followed by an AlxGa1−xAs barrier and
a GaAs narrow well. The mole fraction x varies along the
z-axis, therefore the mass of the electron may vary along
the z-axis. The simplest model of the QW is that of a
step potential and mass, both showing discontinuities at
the same given point and constant inside and outside the
well. Here we suggest a model by taking into account the
spatial variation of the mass inside the barrier or well. Let
us consider a potential barrier of width, d. The structure
may be generated by continuously changing the alloy com-
position x of AlxGa1−xAs from x = 0 to x = 0.32. The
relation between alloy composition x and coordinate z is
given by [28,29]:

x =
0.32z2

d2
. (2)

Now we turn our attention to the PDM Schrödinger equa-
tion (1). As we mentioned before, the continuity condition
forces α = γ = 0 and β = −1.With these choices the PDM
Schrödinger equation (1), takes the form:

(
p

1
2m

p+ V0 − E

)
ψ(z) = 0, d > z > 0 (3)

where V0 is the constant potential associated with the bar-
rier height, and E is the energy of the particle. In spite of
its simple appearance the Schrödinger equation (3) can-
not be solved analytically for arbitrary m. We note here
that an exact solution of (1) including a constant potential
can be obtained when α = γ = −1/4 and β = −1/2, but
in this case continuity conditions can not be satisfied. We
look instead at the problem from a different point of view.
Instead of the potential V0 let us introduce the following
potential [22],

V (z) = V0 +
�

2

8m2

(
m′′ − 7m′2

4m

)
, d > z > 0 (4)

where m is a function of z and m′ and m′′ denote first
and second derivatives of m with respect to z. At this
point it is worth mentioning that we will be interested in
the potential which has a less pronounced cusp. Now, the

potential resembles a square barrier or well with smooth
walls. The additional term is small compared with the
original potential V0 and does not change the shape of
the potential. It is obvious that the conditions are satis-
fied for smoothly varying mass. With the potential (4) the
Schrödinger equation can be exactly solved with a simple
coordinate transformation and the wave function is given
by

ψ(z) =
(
C1e

−ikf(z) + C2e
ikf(z)

)
m

1
4 (5)

where the function f(z) is defined as f(z) =
∫ √

mdz and
k =

√
2

�
(E − V0).

The results given above can easily be used to solve the
Schrödinger equation including well and/or barrier poten-
tials. Let us illustrate our procedure on a simple example.
Consider the potential barrier

V (z) =

{
0 0 > z, z > d

V0 + �
2

8m2

(
m′′ − 7m′2

4m

)
d > z > 0 (6)

with mass barrier

m(z) =
{
m0 0 > z, z > d
m(z) d > z > 0. (7)

We assume that the mass of the particle m0 is constant
outside the barrier. Mass of the particle inside the barrier
m(z) is an arbitrary function of z. The general solution of
the Schrödinger equation yields:

ψ(z) =

⎧⎨
⎩
A1e

ik′z +A2e
−ik′z z < 0(

A3e
−ikf(z) +A4e

ikf(z)
)
m

1
4 d > z > 0

A5e
ik′z z > d

(8)

where k′ =
√

2m0E/�
2 and Ai are constants. For an

abrupt heterostructure the continuity conditions are given
by [18]

mαψ(z) = continuous,mβ d

dz
mαψ(z) = continuous. (9)

The transmission coefficient, T , and reflection coefficient,
R, are defined by

T =
|A5|2
|A1|2

, R =
|A2|2
|A1|2

, T +R = 1. (10)

Using elementary quantum mechanical methods, algebraic
computation applying boundary conditions, will lead to
the following expression which is related with the trans-
mission coefficient:

A5

A1
=
eik′dK+(0)K∗

+(d)eik(f(0)−f(d))

64kk′m0m(0)7/4m(d)5/4f ′(d)

− eik′dK−(0)K∗
−(d)e−ik(f(0)−f(d))

64kk′m0m(0)7/4m(d)5/4f ′(d)
(11)

and the coefficient related with the reflection of the wave:

A2

A1
=
K−(0)K∗

−(d)e2ikf(d) −K+(0)K∗
+(d)e2ikf(0)

K∗
+(d)K∗−(d)e2ikf(d) −K∗−(0)K∗

+(d)e2ikf(0)
(12)
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Fig. 1. Effect of the position dependent mass on the potential
profile. The long dashed line, dashed line and dotted line show
the effect of the ma, mc, and md, respectively, on the potential
profile. The change in the potential profile due to mb(z) is
plotted with long dashed lines and it is negligible.

where K± are given by

K±(a) =[
4k′m(a)2 ± 4km0m(a)f ′(a) − im0m

′(a)
]

(13)

K∗
±(a) is conjugate ofK±(a). The transmission and reflec-

tion coefficients can be computed using the relations (8)
through (12). In the following section we will illustrate our
model using some explicit examples.

3 Examples

In this section we discuss the dependence of the trans-
mission probability on the position dependent mass by
various choices of the mass m(z). We give several exam-
ples for systems with different position dependent masses.
Our criterion for the selection of masses is that the shape
of the original potential does not change and the square
root of m(z) is analytically integrable. Moreover we made
an attempt to include mass functions that are frequently
used in the literature. In order to demonstrate our pro-
cedure, let us begin by considering the following spatially
dependent effective masses found to be useful for studying
transport properties in semiconductors:

ma(z) = m0(σ + δz2)

mb(z) = m0σe
√

δz (14)

mc(z) = m0(σ + tanh(
√
δz))

md(z) = m0

(√
σ + δz2

1 + δz2

)2

where δ is the length scale parameter and σ is a dimension-
less parameter. Through out this section the parameters
are chosen σ = 0.0665, δ = 0.0835, and V0 = 100 meV,
height of the barrier and width of the barrier d = 100 Å.

It can be seen from Figure 1, the potential (4) closely
resembles a square barrier with smooth walls for the
masses ma(z),mb(z) and mc(z). We remark that when
the mass rapidly changes with position z, the shape of the
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Fig. 2. The transmission coefficient T for a potential barrier
with height V0 and a mass discontinuities.

potential profile has a pronounced cusp. The potential (4)
which includes the rapidly changing mass function md(z)
can be plotted as shown in Figure 1. We explicitly cal-
culate transmission probability of the scattering problem
employing various physically meaningful spatially varying
effective masses in the following.

3.1 Mass barrier: m(z)= σm1

Consider now a simple mass barrier such that the mass
changes at the potential discontinuities, but inside and
outside the barrier it is a constant. In this case the poten-
tial V0 remains the same. Since the tunneling effect is not
qualitatively modified by the mass discontinuity, we have
to leave aside the case where E < V0. In the case E > V0

the calculation for transmission coefficient can easily be
done from the relation (11) and a plot of the transmis-
sion probability is illustrated in Figure 2 for various mass
ratios. In the plot we defined the quantities:

m1

m0
= a, d =

π�√
m0V0

, ω =
E

U0
. (15)

The graph shows clearly for m0 ≷ m1 the transmission
coefficient no longer tends to unity when E goes to in-
finity, but it becomes an oscillating function of E, as is
discussed in [15,30]. In Figure 2, the curve denoted by
a = 1, corresponds to the plot of transmission coefficient
for m = 0.0665m0. This is the conduction band edge ef-
fective mass of the electron in the GaAs structure. In the
following we compute the transmission coefficients for the
mass functions given in equation (14).

3.2 Mass barriers: ma(z),mb(z),mc(z) and md(z)

The mass functions given in equation (14) are used in
various fields of physics. We mention here that mass
function ma(z), may be useful to analyze the structures
GaAs/AlxGa1−xAs. For example the effective band mass
of the electron in the barrier can be written [28,31] as

m(x) = m0 (0.0665 + 0.0835x) . (16)
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Fig. 3. The transmission coefficient T for a potential barrier
with height V0 and various position dependent mass disconti-
nuities.

The relation between alloy composition x and the coordi-
nate z is given in equation (2). For comparison we calcu-
lated transmission coefficients by using the relations (10)
through (12) and they are illustrated in Figure 3.

4 Conclusion

In summary, we have discussed the exact solvability of the
PDM Schrödinger equation including a constant potential.
We have recovered a general expression for the transmis-
sion coefficient of the wave through the square potential
barrier. We have presented calculations of transmission
coefficients for various spatially varying effective masses.

Within the framework of the effective mass approxi-
mation, in some previous works [32] the electron was as-
sumed to be confined in a square infinitely high potential
well. In fact, a finite height potential well model is more
realistic for describing the motion of the electron in the
QW [33,34]. It is obvious that the model described in this
article can easily be modified to study QW structures and
superlattices [35].
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